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Abstract:

Breast cancer remains the most prevalent malignancy in women worldwide and its etiology involves
genetic and environmental components. Among these genetic components, the CYP1A1 rs1048943
(Ile462Val) polymorphism has been shown to play a modifying role in breast cancer susceptibility

based on its contribution to the metabolism of carcinogens and estrogens.

This meta-analysis objectively estimated the risk association of this polymorphism and breast cancer

in 34 case-control studies including 14,166 cases and 18,912 controls Pooled odds ratios (ORs) and 95%
confidence intervals (Cls) were calculated under various genetic models. The dominant model

(GG+GA vs. AA) revealed a significant association with breast cancer risk in the overall population

(OR =1.1533, 95% CI: 1.0038-1.3250, p = 0.044). Subgroup analysis by ethnicity showed a stronger
effect in Asian populations (OR = 1.2742, 95% CI: 1.0123—-1.6038, p = 0.039), while a protective effect

was observed

in Caucasians (OR = 0.8843, 95% CI: 0.7837-0.9979, p = 0.046). Other genetic models, including the
allele contrast, recessive, over dominant, and homozygote comparisons, did not show statistically

significant associations in the overall analysis. Sensitivity analyses confirmed the consistency of findings,
stability of the dominant model results, and no major publication bias was detected. These findings suggest
that the CYP1A1 rs1048943 polymorphism may be associated with breast cancer susceptibility,

particularly among Asian populations, while ethnic differences may influence its effect.
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Introduction:

Breast cancer is a malignant neoplasm of the lobules or ductal epithelium of the breast. It is ranked the
highest incidence among all malignancies affecting women worldwide [1]. It is the most frequent

malignancy to be diagnosed in women worldwide. Breast cancer has become the most common cancer
diagnosed and the fifth leading cause of cancer-related death worldwide, replacing lung cancer in recent
years. There were an estimated 2.3 million new cases and 685,000 deaths in 2020, and the incidence is
expected to increase to 4.4 million by 2070. [2]. Associated with the loss of significant healthy life years
(14.9 million DALYS), breast cancer is a major contributor to global cancer morbidity and mortality.
Incidence and mortality burden increases in developed and developing nations both, making it one of the
world's most serious, burdensome cancers. [3] Various studies and researches have suggested that BC
incidence is highest in countries like Northern America, Australia, New Zealand and regions of Europe,
that ranges between 85.8 to 91.6 cases per 100,000 while the mortality rates are highest in regions like
Africa and Oceania, that ranges from 17.4 to 20.1 deaths per 100,000. [4]. Although the incidence of

breast cancer among women who live in South Asia is as in the West, the mortality rates among South
Asian women are disproportionately high. The disparity is primarily because of the lack of screening
guidelines, poor awareness, and a lack of adequate knowledge on the part of the masses about breast
cancer and early detection among this population. [5]. Breast cancer is the most prevalent cancer in
Pakistani women and accounts for 34.6% of all cancers in women. One out of every nine women in
Pakistan is at risk of developing the disease. Alarmingly, only 10% of them are diagnosed with the
disease, and out of them, almost 75% of the diagnosed ones do not receive treatment and die of the

disease within five years. This is one of the highest breast cancer rates in Asia.[6]

Breast cancer risk is influenced by a complex interplay of genetic and environmental factors. Several

genes have been associated with higher risk of breast cancer including BRIPI, CHEK2, TGFB, MDM,
TP53, and PTEN, BRCA2, and BRCAL. [7]. About 10% of female breast cancer cases are linked with
inherited autosomal dominant mutations, which are mostly caused by germline mutations in the BRCA1
and BRCA2 genes. Gene mutations are considered to be high-risk genetic factors for breast cancer.
Female patients with mutations in the BRCA1 or BRCA2 gene have a lifetime risk of 60—80% for breast
cancer.[8]. While only 5 to 10% of breast cancer cases are hereditary, recent estimates indicate that
55-65% of women carrying BRCA 1 mutations and around 45% of those with BRCA2 mutations will
develop breast cancer by the age of 70.[9]. Demographic characteristics such as age, ethnicity,
reproductive history, body mass, socioeconomic status, and geographic location also contribute to an
individual's risk level. There is growing evidences that environmental exposures such as tobacco smoke,
pesticides, insecticides, and food packaging bisphenol are also major causes of risk elevation for breast
cancer.[10]. Based on WHO studies, at least 35% of cancer mortality worldwide can be causally
attributed to potentially modifiable environmental and lifestyle risk factors. These include alcohol
consumption, exposure to ultraviolet (UV) light from the sun and artificial sources of tanning beds, diet,
hormone replacement, and exposure to ionizing radiation. The pattern is seen in low, middle and
high-income nations.[11]. Weight gain is another major risk factor for breast cancer. The age when
menstruation begins is also an important variable in the evaluation of breast cancer risk. Women who

have their first menstrual period under the age of 12 are more vulnerable than those whose period occurs
later since levels of estrogen increase of the girls' blood after puberty.[12].
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Cytochrome P450 1A1 (CYP1AL1) is a phase I enzyme that participates in the metabolism of
endogenous compounds and environmental pollutants. It plays a role in cancer initiation by

catalyzing procarcinogens like polycyclic aromatic hydrocarbons and estradiol. Some genetic
polymorphisms of CYP1A1, such as the A2455G SNP, have also been implicated in the increased risk
of breast cancer, particularly in Caucasian individuals.[13]. CYP1AL is also involved in the metabolism

of estrogen in extrahepatic tissues by catalyzing estrogen hydroxylation. [14]. The CYP1AT1 gene has four
common polymorphisms. The M1 variant is a T to C transition at nucleotide 3801 in the 3' noncoding
region, thus generating a Mspl restriction site. The M2 variant is an A to G transition at nucleotide 2455,
resulting in an amino acid change from isoleucine to valine at codon 462 in the heme-binding domain of
exon 7. The M3 variant is a T to C transition at nucleotide 3205 in the 3' noncoding region of intron 7,
resulting in an RFLP detectable with Mspl. Lastly, the M4 variant is a C to A transition at nucleotide 2453,
resulting in a threonine to asparagine substitution at codon 461 in exon 2 region.[15]. CYP1Al is a

polymorphic gene, situated on chromosome 15 at position 15q22-q24 and is of 5987-bp length. It consists
of 7 exons and 6 introns coding for a 512 amino acid protein. [16] [17]. The CYP1A1 gene contains a

significant SNP known as CYP1A1*2C which is additionally alluded to as A2455G, the m2 allele, or
rs1048943.[18]. The A2455G polymorphism can affect the level of gene expression or messenger RNA
stability, leading to high inducibility of the Cytochrome P450 1A1 activity.[19]

The main objective of this meta-analysis is to assess the overall correlation of the CYP1AT rs1048943
(A4889G) polymorphism with breast cancer risk in ethnically diverse groups. The investigation also aims
to examine the interaction of ethnicity with different genetic models such as dominant, over dominant,
recessive, genotype-based comparisons (e.g., homozygote vs heterozygote) and allelic models with the
correlation of interest. Specifically, this study aims to quantify the strength of this association by

calculating odds ratios (ORs) and 95% confidence intervals (CIs) under these genetic models. In order to
provide assurance regarding the reliability and strength of the results, the study also seeks to evaluate the
occurrence of publication bias and the heterogeneity among the studies included.

Materials and Methods:

Searching Strategy

The search strategy for this meta-analysis is depicted in Figure 1. Study identification and selection
followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines.
A systematic literature search was conducted up to May 2025, focusing exclusively on case-control
studies. The comprehensive search encompassed several databases, including PubMed, Research Gate,
Science Direct, Science Hub and Google Scholar. Relevant studies were identified using keywords such
as “CYP1AI polymorphisms in breast cancer” “A2455G polymorphism,”, “CYP1A1 M2 variation” and
“rs1048943 CYP1AL association.” In total, 34 studies examining the [le462Val (CYP1A1*2C)

polymorphism were included, each providing genotypic data from a case-control design.

Association of CYP1A1 rs1048943 36
Polymorphism: A Comprehensive Meta-Analysis of Case—Control Studies



IJCHMD 2026 ;2 (1): 37
Identification of studies via databases and registers
—
= Records removed before screening:
= Records identified from
= — Duplicate records removed (n=120)
= Databases (n=614)
g Records removed for other reasons
= (n=30)
Records screened Records excluded**
——
(n =464) (n=319)
Reports sought for retrieval Reports not retrieved

o
£ (n =145) (n =10)
=
@
E l
(4]
w0

Reports assessed for eligibility

(n=135)

Reports excluded:
Not English (n =26)
Incomplete data (n = 45)

Only cases (n =30)

Studies included in review

Included

(n=34)

Figure 1: The PRISMA flowchart illustrating the study selection process for inclusion in

the meta-analysis

Data Extraction and Quality Assessment

Data was separately retrieved into a standardized manner by two independent reviewers from the
published data. The following information was included in each article: the first author's name, the year
of publication, the country of origin, the sample sizes, the genotyping frequencies, the number of cases
and control (Table 1). The quality of the following studies was assessed and evaluated using a
standardized evaluation tool to ensure methodological consistency and reliability.
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Table 1. Data inclusions and Hardy Weinberg Equilibrium (HWE) included in meta-analysis.

Study Referen | Ethni GG |GA |AA |GG- |GA_ |AA | HW- | HW-
ces city B _ _ Contr | Contr | Contr | P.val | adjus

Cas | Cas | Cas | ols ols ols ue ted.P.va
es es es lue

Murithi et | [20] Mixed |2 5 61 |0 0 20 1 1

al., 2023

Linetal., |[21] Asian |12 |92 | 117 |12 59 75 0.93 |0.9923

2022 39

Ibrahem [22] Asian |20 |70 |90 |12 38 130 0.00 |0.0024

et al., 05

2021

Zhao et [23] Asian |5 55 |80 |9 31 100 0.00 | 0.0246

al., 2021 58

Hamad et | [24] Mixed |16 14 |70 |8 5 87 0 0

al., 2021

Ghazaleh | [25] Asian | 0 21 |75 |2 17 91 0.27 ]0.5932

et al., 06

2019

Mary et [26] Asian | 4 36 160 | 2 34 164 0.87 | 0.957

al., 2019 26

Wielsoe et | [28] Asian |17 |38 [20 |19 38 24 0.60 | 0.8881

al., 2018 08

Naifet al., | [27] Asian |97 |62 |40 |21 65 74 0.26 |0.5932

2018 92

Humberto | [28] Caucas | 4 60 |873 |3 92 890 0.70 | 0.9022

etal., 1an 46

2017

Garciaet | [29] Mixed | 150 | 409 | 368 | 161 488 338 0.49 |0.7652

al., 2017 51

Ghisari et | [30] Caucas | 0 4 138 |1 8 187 0.01 |0.0461

al., 2017 ian 22

Mutaret | [31] Asian |21 |3 26 | 30 7 13 0 0

al., 2017

Parisaet | [32] Asian | 43 13 |23 |27 12 40 0 0

al., 2016

Amrani et | [33] Asian | 0 10 102 |1 12 102 0.34 | 0.6249

al., 2016 92

Borges et Mixed |20 | 195 |527 |15 157 570 0.28 |0.5932

al.,, 2015 | [34] 34
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Hakimeh et | [36 | Asian 1 17 |82 |0 7 93 0.716 | 0.9022
al., 2014 ] 8
Martinez et | [37 | Mixed 74 (37 |39 |50 43 57 0 0
al., 2013 ]
Wang et al., | [38 | Asian 36 | 149 215 |24 152 224 0.789 |0.9224
2011 ] 7
Moreno et [39 | Mixed 14 148 |29 15 41 38 0.484 | 0.7652
al., 2010 ] 5
Marie, 2010 | [40 | Caucasia | 2 210 {293 |7 378 5099 0998 |1

] n 4 4
Laetitia et [41 | Caucasia |5 52 |853 |5 59 932 0.000 | 0.0017
al, 2010 ] n 3
Surekha et [42 | Asian 1 169 | 78 0 127 122 0 0
al., 2009 ]
Shimadaet |[43 | Mixed 29 1245 | 592 |28 232 613 0.296 | 0.5932
al., 2009 ] 6
Christinaet | [44 | Caucasia | 0 41 563 |3 51 565 0.122 | 0.3786
al., 2008 ] n 5
Shinetal., |[45 | Asian 28 | 213 | 252 |30 175 232 0.698 | 0.9022
2007 ] 2
Sillanpdéd et | [46 | Caucasia | 2 53 1426 |1 66 412 0.327 [ 0.6184
al., 2007 ] n 4
Singh et al., | [47 | Asian 0 25 |80 |5 41 70 0.743 | 0.9022
2006 ]
Sonia etal., | [48 | Asian 51 421 [ 659 |73 442 694 0.813 | 0.9224
2005 ] 9
Hefler et al., | [49 | Caucasia | 1 28 361 |6 117 1570 | 0.018 | 0.0639
2004 ] n 8
Lietal, [15 | Mixed 3 41 | 644 |2 48 652 0.272 | 0.5932
2004 ] 5
Miyoshiet | [50 | Asian 12 |52 [131 |22 94 156 0.149 | 0.4247
al., 2002 ] 9
Huang et [51 | Asian 8 64 |71 12 53 80 0.449 | 0.7635
al., 1999 ] 1
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Inclusion and Exclusion Criteria

The inclusion criteria for this study were as follows: (1) studies that involved both breast cancer patients
and healthy control groups; (2) studies that provided genotyping data; (3) studies that evaluated the
association between CYP1A1 polymorphisms and breast cancer risk; and (4) only full-text articles
published in English were considered. The exclusion criteria for this study were as follows: (1) studies
that were not based on a case-control design; (2) duplicate publications of previously included research;
(3) studies with insufficient or incomplete data; (4) studies that did not evaluate the association

between CYP1A1 polymorphisms and breast cancer risk; and (5) non-original research articles,

including editorials, letters, case reports, reviews, and other meta-analyses.

Statistical analysis
Statistical analyses were conducted using R Studio to estimate the pooled odds ratios (ORs) and

corresponding 95% confidence intervals (Cls), a random-effects model was primarily applied to account
for expected heterogeneity among studies. When heterogeneity was low, a fixed-effects model was used
instead. Inter-study heterogeneity was quantified using the I? statistic, with values above 50% indicating
substantial heterogeneity. Publication bias was assessed using Egger’s test, complemented by funnel plot
analysis for visual inspection. To ensure the validity of genotype distributions in control groups, the
Hardy-Weinberg equilibrium (HWE) test was conducted, thereby confirming the reliability of the genetic
data included in the meta-analysis.

Sensitivity Analysis

A sensitivity analysis was conducted to test the stability of our meta-analysis results and to assess the
potential influence of each individual study on the overall outcome. This was done using the
leave-one-out approach, in which one study was omitted at a time, and the pooled odds ratio and 95%
confidence interval were recalculated for each iteration. This method allowed us to identify any single
study that might disproportionately affect the combined effect estimate.

Results:

This meta-analysis examines the relationship between the CYP1A1 rs1048943 (Ile462Val)
polymorphism and breast cancer susceptibility, drawing on data from 34 case-control studies involving
a total of 14,166 breast cancer cases and 18,912 healthy controls.

1. Allele Contrast Model (G vs. A)
Overall Analysis
The allele contrast model included 34 studies and showed a modest but non-significant association

(OR =1.1249, 95% CI: 0.9889-1.2794, p = 0.073). The analysis used a random-effects model due to
substantial heterogeneity (I> = 81.58%, p < 0.001), indicating significant variation between studies. No
publication bias was detected (Egger's test p = 0.2559).
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Ethnicity-Specific Results

. Asian Population (19 studies): Showed the strongest effect size (OR = 1.1888, 95% CI:
0.9614-1.4700, p = 0.110) with high heterogeneity (I* = 86.11%) but remained non-significant.

No publication bias was observed (p = 0.5243).

. Caucasian Population (7 studies): Demonstrated a significant protective effect (OR = 0.885, 95%
CI: 0.7874-0.9946, p = 0.040). The analysis used a fixed-effects model due to low heterogeneity (1> = 0%,
p = 0.5754). No publication bias was detected (p = 0.2022).

. Mixed Population (8 studies): Showed a borderline significant association (OR = 1.2412, 95% CI:
0.9957-1.5472, p = 0.055) with moderate heterogeneity (I> = 77.99%). Potential publication

bias was suggested (p = 0.071) (Figure:2).
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Figure 2: (A) illustrate forest plot, (B) illustrate funnel plot for G vs. A

2. Recessive Model (GG vs. GA+AA)

Overall Analysis

The recessive model analysis of 34 studies revealed no significant association (OR = 1.1409, 95% CI:
0.8972-1.4508, p = 0.282). Moderate heterogeneity was observed (I> = 59.95%, p < 0.001),
necessitating a random-effects model. No publication bias was detected (p = 0.659).

Ethnicity-Specific Results

. Asian Population (19 studies): No significant association was found (OR = 1.0785, 95% CI:
0.7249-1.6044, p = 0.709) with high heterogeneity (1> = 74.17%). No publication bias was observed (p =
0.5924).

. Caucasian Population (7 studies): Showed no significant association (OR = 0.8586, 95% CI:
0.4309-1.7111, p = 0.665) with no heterogeneity (I*> = 0%, p = 0.8035), allowing for fixed-effects
analysis. No publication bias was detected (p = 0.2839).

. Mixed Population (8 studies): Demonstrated a borderline significant association (OR = 1.1695, 95%
CI: 0.9759-1.4015, p = 0.090) with low heterogeneity (I> = 21.8%, p = 0.2561), permitting fixed-effects
analysis. No publication bias was observed (p = 0.2693) (Figure:3).
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Figure 3: (A) illustrate forest plot, (B) illustrate funnel plot for GG vs. GA+AA genotype.
3. Dominant Model (GG+GA vs. AA)
Overall Analysis

The dominant model showed a significant association across 34 studies (OR = 1.1533, 95% CI:
1.0038-1.3250, p = 0.044). High heterogeneity was present (I> = 76.06%, p < 0.001), requiring
random-effects modeling. A potential publication bias was suggested (Egger's test p = 0.0948).

Ethnicity-Specific Results

. Asian Population (19 studies): Demonstrated a significant association (OR = 1.2742, 95% CI:

1.0123-1.6038, p = 0.039) with high heterogeneity (I> = 80.43%). No publication bias was detected
(p =0.3062).

. Caucasian Population (7 studies): Showed a significant protective effect (OR = 0.8843, 95% CI:

0.7837-0.9979, p = 0.046) with no heterogeneity (I> = 0%, p = 0.5495), allowing fixed-effects analysis.

No publication bias was observed (p = 0.2545).
. Mixed Population (8 studies): No significant association was found (OR = 1.2346, 95% CI:

0.9521-1.6008, p = 0.112) despite significant heterogeneity (I> = 74.79%, p = 0.0002). No publication

bias was detected (p = 0.1031) (Figure:4).
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Figure 4: (A) illustrate forest plot, and (B) illustrate funnel plot for GG+GA vs. AA
genotype.
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4. Over dominant Model (GA vs. GG+AA)

Overall Analysis

The over dominant model analysis of 34 studies showed no significant association (OR = 1.0603, 95%
CI: 0.9454-1.1891, p = 0.317). Moderate heterogeneity was observed (I> = 62.13%, p < 0.001),
necessitating random-effects modeling. No publication bias was detected (p = 0.2766).
Ethnicity-Specific Results

. Asian Population (19 studies): No significant association was found (OR = 1.1657, 95% CI:
0.9693-1.4018, p = 0.103) with moderate heterogeneity (I> = 66.67%). No publication bias was observed
(p =0.5966).

. Caucasian Population (7 studies): Showed a borderline significant protective effect (OR = 0.8887,
95% CI: 0.7863-1.0046, p = 0.059) with no heterogeneity (I> = 0%, p = 0.51), allowing fixed-effects
analysis. No publication bias was detected (p = 0.333).

. Mixed Population (8 studies): No significant association was observed (OR = 1.0718, 95% CI:
0.8580-1.3389, p = 0.541) with moderate heterogeneity (I> = 63.26%, p = 0.008). No publication bias

was detected (p = 0.2599). (Figure:5)
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Figure 5: (A) illustrate forest plot, and (B) illustrate funnel plot for GA vs GG+ AA genotype.

5. Homozygote Comparison (GG vs. AA)

Overall Analysis

The homozygote comparison across 34 studies revealed no significant association (OR = 1.2036, 95% CI:
0.9136-1.5856, p = 0.188). Moderate heterogeneity was present (I> = 66.01%, p < 0.001), requiring
random-effects modeling. No publication bias was detected (p = 0.8707).

Ethnicity-Specific Results

. Asian Population (19 studies): No significant association was found (OR = 1.1731, 95% CI:
0.7479-1.8401, p = 0.487) with high heterogeneity (I*> = 77.45%). No publication bias was observed

(p =0.8795).

. Caucasian Population (7 studies): Showed no significant association (OR = 0.8486, 95% CI.:
0.4258-1.6913, p = 0.641) with no heterogeneity (I> = 0%, p = 0.8105), permitting fixed-effects analysis.
No publication bias was detected (p = 0.2736).

. Mixed Population (8 studies): Demonstrated a borderline significant association (OR = 1.3308, 95%
CI: 0.9478-1.8685, p = 0.099) with moderate heterogeneity (I*> = 47.38%, p = 0.0651). No publication
bias was observed (p = 0.1142).(Figure:6)
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Figure 6: (A) illustrate forest plot, and (B) illustrate funnel plot for GG vs. AA genotype.

6. Heterozygote vs. Homozygote Dominant (GG vs. GA)

Overall Analysis

This comparison included 33 studies and showed no significant association (OR = 1.0514, 95% CI:
0.8530-1.2958, p = 0.639). Significant heterogeneity was observed (I> = 38.94%, p = 0.0129),
necessitating random-effects modeling. No publication bias was detected (p = 0.3557).

Ethnicity-Specific Results

. Asian Population (19 studies): No association was found (OR = 1.0009, 95% CI: 0.7046-1.4217,p =
0.996) with moderate heterogeneity (I> = 59.76%, p = 0.0005). No publication bias was observed

(p =0.5844).

. Caucasian Population (7 studies): Showed no significant association (OR = 0.9791, 95% CI:
0.4833-1.9835, p = 0.953) with no heterogeneity (I> = 0%, p = 0.7363), allowing fixed-effects analysis.
No publication bias was detected (p = 0.423).

. Mixed Population (7 studies): No significant association was observed (OR = 1.1239, 95% CI:
0.9228-1.3689, p = 0.246) with no heterogeneity (I = 0%, p = 0.7121), permitting fixed-effects analysis.
No publication bias was detected (p = 0.6659). (Figure:7)
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Figure 7: (A) illustrate forest plot, and (B) illustrate funnel plot for GG vs GA genotype.
7. Heterozygote vs. Homozygote Recessive (GA vs. AA)
Overall Analysis

The analysis of 34 studies showed a borderline significant association (OR = 1.1157, 95% CI:
0.9838-1.2652, p = 0.088). Moderate heterogeneity was present (I> = 66.53%, p < 0.001), requiring
random-effects modeling. No publication bias was detected (p = 0.1125).

Ethnicity-Specific Results

. Asian Population (19 studies): Demonstrated a significant association (OR = 1.2577, 95% CI:
1.0275-1.5395, p = 0.026) with moderate heterogeneity (I> = 69.99%). No publication bias was observed
(p = 0.3475).

. Caucasian Population (7 studies): Showed a borderline significant protective effect (OR = 0.8883,
95% CI: 0.7859-1.0041, p = 0.058) with no heterogeneity (I> = 0%, p = 0.514), allowing fixed-effects
analysis. No publication bias was detected (p = 0.3285).

. Mixed Population (8 studies): No significant association was found (OR = 1.1372, 95% CI:
0.8869-1.4581, p = 0.311) with moderate heterogeneity (I = 67.53%, p = 0.003). No publication bias was
observed (p = 0.1689). (Figure:8)
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Figure 8: (A) illustrate forest plot, and (B) illustrate funnel plot for GA vs AA genotype.
Summary and Clinical Implications:

The meta-analysis reveals significant ethnic heterogeneity in genetic associations. The most robust
findings include:

1. Significant associations: Dominant model overall and in Asians, allele contrast and
heterozygote comparison in Caucasians showing protective effects, and heterozygote vs.
homozygote recessive comparison in Asians.

2. Ethnic differences: Opposite effects observed between Asian and Caucasian populations in several
models, suggesting population-specific genetic architecture.

3. Heterogeneity concerns: High I? values in many analyses indicate substantial between-
study variation, potentially due to population stratification, linkage disequilibrium patterns, or
methodological differences.
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4.  Publication bias: Generally low risk across analyses, supporting the reliability of findings.

These results suggest that genetic associations may vary significantly across ethnic groups,

emphasizing the importance of population-specific genetic studies and personalized medicine approaches.

Table 2. Overall and Subgroup Analysis Results from Meta-Analysis.

Model Eth | Numbe Test of Test of Publica
nicit | r of associat heteroge tion
y studies ion neity bias
O |95% CI | p-val | Mo | p-val I* | p-val
R del 2 (Egger’
s test)
Allele contrast | Over | 34 1.1 [ [0.9889; | 0.073 | Ran | 0 0.8 | 0.2559
(Gvs. A) all 24 | 1.2794] | 32575 | do 15
9 7 m 8
Asia | 19 1.1 [ [0.9614; | 0.110 |Ran | 0 0.8 | 0.5243
n 88 | 1.4700] | 39546 | do 61
8 9 m 1
Cau |7 0.8 | [0.7874; | 0.040 | Fix | 0.5754 0 ]0.2022
casia 85 10.9946] | 22335 | ed
n 9
Mix | 8 1.2 | [0.9957; | 0.054 | Ran | 0 0.7 1 0.071
ed 41 | 1.5472] | 67297 | do 79
2 2 m 9
Recessive Over | 34 1.1 [ [0.8972; | 0.282 | Ran | 0 0.5 | 0.659
model (GG vs. | all 40 | 1.4508] | 39510 | do 99
GA+AA) 9 2 m 5
Asia | 19 1.0 | [0.7249; | 0.709 | Ran | 0 0.7 | 0.5924
n 78 | 1.6044] | 35463 | do 41
5 1 m 7
Cau |7 0.8 | [0.4309; | 0.664 | Fix | 0.8035 0 ]0.2839
casia 58 [ 1.7111] | 81229 |ed
n 6 9
Mix | 8 1.1 | [0.9759; | 0.089 | Fix | 0.2561 0.2 | 0.2693
ed 69 | 1.4015] | 91459 |ed 18
5 5
Dominant Over | 34 1.1 [ [1.0038; | 0.044 | Ran |0 0.7 1 0.0948
model (GG+GA | all 53 | 1.3250] | 03183 | do 60
vs. AA) 3 4 m 6
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Mix | 8 1.2 | [0.9521; [ 0.111 | Ran | 0.0002 0.7 { 0.1031
ed 34 | 1.6008] | 90323 | do 47
6 3 m 9
Overdominant | Over | 34 1.0 [ [0.9454; | 0.317 |Ran | 0 0.6 | 0.2766
model (GA vs. all 60 | 1.1891] | 08895 | do 21
GG+AA) 3 7 m 3
Asia | 19 1.1 [ [0.9693; | 0.103 |Ran | 0 0.6 | 0.5966
n 65 | 1.4018] | 32333 | do 66
7 3 m 7
Cau |7 0.8 | [0.7863; | 0.059 | Fix | 0.51 0 0.333
casia 88 | 1.0046] | 20737 | ed
n 7
Mix |8 1.0 | [0.8580; | 0.541 | Ran | 0.008 0.6 | 0.2599
ed 71 | 1.3389] | 39045 | do 32
8 6 m 6
GG vs. AA Over | 34 1.2 [ [0.9136; | 0.187 |Ran | 0 0.6 | 0.8707
all 03 | 1.5856] | 77019 | do 60
6 4 m 1
Asia | 19 1.1 | [0.7479; | 0.486 | Ran | 0 0.7 | 0.8795
n 73 | 1.8401] | 87948 | do 74
1 8 m 5
Cau |7 0.8 | [0.4258; | 0.640 | Fix | 0.8105 0 0.2736
casia 48 | 1.6913] | 86332 |ed
n 6 4
Mix |8 1.3 [ [0.9478; | 0.098 | Ran | 0.0651 04 ]0.1142
ed 30 | 1.8685] | 91731 | do 73
8 4 m 8
GG vs. GA Over | 33 1.0 | [0.8530; | 0.638 | Ran | 0.0129 0.3 | 0.3557
all 51 | 1.2958] | 58710 | do 89
4 9 m 4
Asia | 19 1.0 | [0.7046; | 0.996 | Ran | 0.0005 0.5 | 0.5844
n 00 | 1.4217] | 06027 | do 97
9 7 m 6
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Sensitivity Result:

A sensitivity analysis was conducted across all genetic models using the leave-one-out method to evaluate
the robustness and stability of the meta-analysis findings. In the allele contrast model (G vs. A), the
sequential removal of individual studies did not significantly alter the pooled odds ratio, suggesting
consistent and stable results (Figure S1). Similarly, the dominant model (GG+GA vs. AA) maintained
statistical significance and demonstrated robustness throughout the analysis, confirming the reliability of
the observed association (Figure S3). The recessive model (GG vs. GA+AA) and the over dominant
model (GA vs. GG+AA) also exhibited stable effect estimates

with minimal variation when studies were omitted one at a time (Figures S2 and S4). Additionally,
genotype-specific comparisons—homozygote comparison (GG vs. AA), heterozygote vs.

homozygote dominant (GG vs. GA), and heterozygote vs. homozygote recessive (GA vs. AA)—all
displayed consistent pooled odds ratios, indicating that no single study had a disproportionate impact on
the overall results (Figures S5, S6, and S7). These findings support the reliability and internal validity of
meta-analysis across all genetic models. (The figures S1 to S7 are in another document).

Discussion:

Globally, breast cancer (BC) is the most frequently diagnosed cancer, occurring in 1 out of 8 women in
the United States. Over the years, studies on hormonally linked risk factors have significantly helped in
unraveling the etiology of BC.[52]. Breast cancer (BC) is the second most frequent malignancy in
females after skin cancer, which is the most frequent cancer. [53]. Over one million new BC cases occur
yearly, and over 410,000 deaths are caused by this malignancy. Although there has been a significant
decline in BC mortality in many countries during the past two decades, the incidence rates continue to
increase, especially in populations that traditionally have low rates. A number of polymorphisms, such as
single nucleotide polymorphisms (SNPs), in genes involved in xenobiotic metabolism and the synthesis
and degradation of estrogen can modulate circulating estrogen levels, increase susceptibility to environ-
mental carcinogens, and thereby predispose to breast cancer. [54]. Cytochrome p450 (CYP) 1Al is a
phase I enzyme necessary for steroid, xenobiotic chemicals and other possible genotoxic compounds'
metabolism.[55]

This meta-analysis assessed the relationship between the CYP1AT1 rs1048943 (Ile462Val) polymorphism
and susceptibility to breast cancer, pooling information from 34 case-control studies, including 14,166
cases and 18,912 controls. The CYP1A1 gene produces an enzyme that participates in polycyclic aromat-
ic hydrocarbons (PAHs)phase I metabolism, which is an established carcinogen. The rs1048943 polymor-
phism causes an isoleucine-to-valine substitution at codon 462, possibly increasing enzymatic activity
and metabolic activation of carcinogens and thus to DNA damage and carcinogenesis. In the allele
contrast model (G vs. A), there was no statistically significant association (OR = 1.1249, 95% CI:
0.9889-1.2794, p = 0.073), while the direction of the effect indicated a possible increased risk with the G
allele. Again, the recessive model (GG vs. GA+AA) was not significantly associated (OR = 1.1409, 95%
CI: 0.8972-1.4508, p = 0.282). These results suggest that having two copies of the G allele by itself might
not increase risk very much. Nonetheless, the dominant model (GG+GA vs. AA) showed a statistically
significant correlation (OR = 1.1533, 95% CI: 1.0038-1.3250, p = 0.044), suggesting that a single G
allele might provide higher susceptibility to breast cancer. The analyses by ethnicity, subgroup, gave
more specific results. In Asian populations (19 studies), the dominant model was significant (OR =
1.2742, 95% CI: 1.0123-1.6038, p = 0.039), implying that individuals of Asian origin with the G allele
could be at increased risk. The association could be due to population heterogeneity in linkage disequilib-
rium, environmental exposures, or gene-environment interactions. Conversely, the Caucasian subgroup (7
studies) exhibited a strong protective effect in the same model (OR = 0.8843, 95% CI: 0.7837-0.9979, p
= 0.046), suggesting possible ethnic variation in genetic predisposition.
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The mixed population subgroup failed to exhibit statistically significant associations across any model,
but numerous estimates were borderline and merit consideration in admixed populations. Additional
genotype-based comparisons reaffirmed these trends. The over dominant model (GA vs. GG+AA), which
can indicate heterozygote advantage or disadvantage, was not significant overall (OR = 1.0603, 95% CI:
0.9454-1.1891, p = 0.317). Similarly, the homozygote contrast (GG vs. AA) and heterozygote-based
contrasts (GG vs. GA and GA vs. AA) were not significant in the overall analysis. Nonetheless, the GA
vs. AA comparison was notable in the Asian subgroup (OR = 1.2577, 95% CI: 1.0275-1.5395, p =
0.026), while highlighting the potential role of heterozygous genotypes to modulate risk in certain popu-
lations. Conversely, a borderline protective trend was observed in Caucasians (OR = 0.8883, p = 0.058).
These ethnic differences might be due to underlying genetic structure, environmental exposures (such as
tobacco smoke, diet), and cultural or behavioral influences that interact with variant genes. The G allele
could change the enzyme activity of CYP1AL1 differently in different populations because of modifier
genes or co-expressed polymorphisms. This emphasizes the need for population-specific genetic studies
when evaluating cancer risk.

To contextualize these findings, several previous studies offer direct support for the observed association
under the dominant model in Asian populations. For instance, Naif et al., 2018 in Iraq analyzed 199
breast cancer cases and 160 healthy controls, reporting a significantly higher frequency of GG+GA
genotypes in cases (79.9%) compared to controls (53.8%). The calculated odds ratio was OR = 3.38 (95%
CI: 2.09-5.47), strongly suggesting increased risk among carriers of the G allele.[27]. Similarly, Bab et
al., 2017 in Iran examined 79 cases and 79 controls, finding 70.9% of cases and 49.4% of controls carried
the dominant genotype, yielding OR = 2.55 (95% CI: 1.29-5.05) in favor of elevated risk.[32]. In India,
Surekha et al., 2009 evaluated 250 cases and 250 controls, observing 68.5% vs. 51.0% GG+GA genotype
frequencies, respectively. This produced a consistent odds ratio of OR =2.08 (95% CI: 1.45-2.98),
aligning with our pooled

result.[42]. Additionally, Ghisari et al., 2014 reported dominant genotype frequencies of 86.7% in 31
breast cancer cases and 71.7% in 115 controls among Greenlandic Inuit women, corresponding to

OR = 2.48 (95% CI: 0.82-7.52) — supporting the same trend despite limited sample size.[35].
Collectively, these studies reinforce our meta-analysis finding of a significant association in Asian

populations under the dominant model (OR = 1.2742, p = 0.039), affirming that the CYP1A1 rs1048943
polymorphism may modestly increase breast cancer risk in this ethnic group.

To further validate the stability and reliability of our findings, a sensitivity analysis was performed across
all genetic models using the leave-one-out approach. This method sequentially excluded each individual
study to assess its influence on the overall pooled effect. In the allele contrast model (G vs. A), the pooled
odds ratio remained stable throughout, indicating that no single study significantly impacted the overall
result. Similarly, in the dominant model (GG+GA vs. AA), the observed statistical significance persisted
across iterations, reinforcing the robustness of the association. The recessive model (GG vs. GA+AA)

and the over dominant model (GA vs. GG+AA) also displayed minimal fluctuation in effect sizes when
individual studies were omitted, suggesting consistent findings in those models as well. Moreover,

genotype-specific comparisons—including the homozygote contrast (GG vs. AA), heterozygote vs.
homozygote dominant (GG vs. GA), and heterozygote vs. homozygote recessive (GA vs. AA)—showed
similarly stable results, with no evidence that any one study disproportionately influenced the pooled
estimates. Collectively, these sensitivity analyses affirm the internal validity of this meta-analysis and
underscore the consistency of the observed associations across various genetic models.
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Conclusion:
The meta-analysis identified a potential association between the CYP1A1 rs1048943 (Ile462Val)

polymorphism and breast cancer susceptibility, particularly under the dominant model (GG+GA vs. AA),
which demonstrated a statistically significant association in the overall population. In contrast, no

significant associations were found in the allele contrast, recessive, over dominant, or homozygote

comparison models in the overall analysis. Subgroup analyses revealed a significant increase in breast
cancer risk among Asian populations under both the dominant model and the GA vs. AA comparison,
while a protective effect was observed among Caucasian populations under the dominant model. No
consistent associations emerged in the mixed population subgroup. Notably, high heterogeneity was
observed in most genetic models, particularly among studies involving Asian populations, whereas
studies in Caucasian populations demonstrated minimal heterogeneity, suggesting more stable effect
estimates within that group.
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