Effect of Various Surface Treatments on Micromorphology of MTA Plus® and Biodentine® and Comparative Evaluation of Their Shear Bond Strength to Composite Resin- an invitro SEM analysis
Keywords:
Biodentine, Composite resin, Micromorphology, MTA Plus, Shear bond strength, scanning electron microscopeAbstract
Introduction: To evaluate the micromorphological changes due to different surface treatments on MTA Plus® and Biodentine® and comparison of their shear bond strength to composite resin with three different adhesive systems. Methods: Eighty acrylic blocks with a standardized central hole were prepared and filled with MTA Plus (Group A) and Biodentine (Group B). They were randomly divided into four subgroups each; A1, B1: Control groups (untreated samples); A2, B2: One-step self- etch adhesive; A3, B3: Two-step self-etch adhesive; A4, B4: Two-step etch and rinse adhesive. Surface treatment was performed using phosphoric acid or self-etch primer, and untreated surfaces were used as controls. The surface changes were observed under a scanning electron microscope. The specimens were bonded with the respective adhesive systems followed by composite resin restoration. The shear bond strength was tested using universal testing machine and the data was subjected to one-way ANOVA and Tukey's multiple comparison test. Results: Extensive loss of globular structure was seen in phosphoric acid treated group while only selective loss was observed in samples treated with self-etch primer. Treated surfaces of MTA Plus showed more internal pores and cracks as compared to treated Biodentine surfaces. The one-step self-etch adhesive system showed significantly higher shear bond strength when compared with other groups (p< 0.05). MTA Plus exhibited better shear bond strength as compared to Biodentine, which was statistically non-significant (p>0.05). Conclusions: Either surface treatments cause alteration in micromorphology of MTA- Plus and Biodentine. One-step self-etch adhesives could be a preferred choice when bonding composite to Biodentine or MTA Plus.
References
Abdullah HA, Al-Ibraheemi ZA, Hanoon ZA, Haider J. Evaluation of Shear Bond Strength of
Resin-Based Composites to Biodentine with Three Types of Seventh-Generation Bonding
Agents: An In Vitro Study. Int J Dent. 2022 Jul 30;2022:2830299. doi: 10.1155/2022/2830299.
PMID: 35942229; PMCID: PMC9356874.
Altunsoy M, Tanrıver M, Ok E, Kucukyilmaz E. Shear Bond Strength of a Self-adhering
Flowable Composite and a Flowable Base Composite to Mineral Trioxide Aggregate,
Calcium-enriched Mixture Cement, and Biodentine. J Endod. 2015 Oct;41(10):1691-5. doi:
1016/j.joen.2015.06.013. Epub 2015 Aug 1. PMID: 26238526.
Asgary S, Parirokh M, Eghbal MJ, Brink F. Chemical differences between white and gray
mineral trioxide aggregate. J Endod. 2005 Feb;31(2):101-3. doi:
1097/01.don.0000133156.85164.b2. PMID: 15671818.
Atabek D, Sillelioğlu H, Olmez A. Bond strength of adhesive systems to mineral trioxide
aggregate with different time intervals. J Endod. 2012 Sep;38(9):1288-92. doi:
1016/j.joen.2012.06.004. Epub 2012 Jul 24. PMID: 22892753.
Atash R, Van den Abbeele A. Bond strengths of eight contemporary adhesives to enamel and to
dentine: an in vitro study on bovine primary teeth. Int J Paediatr Dent. 2005 Jul;15(4):264-73.
doi: 10.1111/j.1365-263X.2005.00650.x. PMID: 16011785.
Bachoo IK, Seymour D, Brunton P. A biocompatible and bioactive replacement for dentine: is
this a reality? The properties and uses of a novel calcium-based cement. Br Dent J. 2013
Jan;214(2):E5. doi: 10.1038/sj.bdj.2013.57. PMID: 23348482.
Bayrak S, Tunç ES, Saroğlu I, Eğilmez T. Shear bond strengths of different adhesive systems to
white mineral trioxide aggregate. Dent Mater J. 2009 Jan;28(1):62-7. PMID: 19280969.
Biodentine Active Biosilicate Technology Scientific File. Paris, France:
Septodont; http://www.septodontusa.com/ [Google Scholar]
Camilleri J. Investigation of Biodentine as dentine replacement material. J Dent. 2013
Jul;41(7):600-10. doi: 10.1016/j.jdent.2013.05.003. Epub 2013 May 15. PMID: 23685034.
Camilleri J. Staining Potential of Neo MTA Plus, MTA Plus, and Biodentine Used for Pulpotomy
Procedures. J Endod. 2015 Jul;41(7):1139-45. doi: 10.1016/j.joen.2015.02.032. Epub 2015 Apr
PMID: 25887807.
Camilleri J, Formosa L, Damidot D. The setting characteristics of MTA Plus in different
environmental conditions. Int Endod J. 2013 Sep;46(9):831-40. doi: 10.1111/iej.12068. Epub
Feb 26. PMID: 23441890.
Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of
radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater. 2013
May;29(5):580-93. doi: 10.1016/j.dental.2013.03.007. Epub 2013 Mar 26. PMID: 23537569.
Carvalho CN, Francci CE, Costa JF, Bauer J. Effect of filler and application mode on micro-shear
bond strength of etch-and-rinse adhesive systems. Rev Port Estomatol Med Dent Cir Maxilofac
; 56: 89–94. doi.org/10.1016/j.rpemd.2015.05.002
Cornélio AL, Rodrigues EM, Salles LP, Mestieri LB, et al. Bioactivity of MTA Plus, Biodentine
and experimental calcium silicate-based cements in human osteoblast-like cells. Int Endod J
; 26. doi: 10.1111/iej.12589.
De Souza ET, Nunes Tameirão MD, Roter JM, De Assis JT, De Almeida Neves A, De-Deus GA.
Tridimensional quantitative porosity characterization of three set calcium silicate-based repair
cements for endodontic use. Microsc Res Tech. 2013 Oct;76(10):1093-8. doi:
1002/jemt.22270. Epub 2013 Jul 30. PMID: 23913667.
Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP. Using mineral trioxide
aggregate as a pulp-capping material. J Am Dent Assoc. 1996 Oct;127(10):1491-4. doi:
14219/jada.archive.1996.0058. PMID: 8908918.
Formosa LM, Mallia B, Camilleri J. Mineral trioxide aggregate with anti-washout gel - properties
and microstructure. Dent Mater. 2013 Mar;29(3):294-306. doi: 10.1016/j.dental.2012.11.009.
Epub 2012 Dec 17. PMID: 23253552.
Grech L, Mallia B, Camilleri J. Investigation of the physical properties of tricalcium silicate
cement-based root-end filling materials. Dent Mater. 2013 Feb;29(2):e20-8. doi:
1016/j.dental.2012.11.007. Epub 2012 Nov 27. PMID: 23199808.
Guven Y, Tuna EB, Dincol ME, Aktoren O. X-ray diffraction analysis of MTA-Plus,
MTA-Angelus and DiaRoot BioAggregate. Eur J Dent. 2014 Apr;8(2):211-215. doi:
4103/2278-344X.130603. PMID: 24966772; PMCID: PMC4054052.
Jacobsen T, Söderholm KJ. Some effects of water on dentin bonding. Dent Mater. 1995
Mar;11(2):132-6. doi: 10.1016/0109-5641(95)80048-4. PMID: 8621034.
Kumar V, Showkat I, Manuja N, Chaudhary S, Sinha AA, Telgi CR. Comparative Evaluation of
Shear Bond Strength of Tricalcium Silicate-based Materials to Composite Resin with Two
Different Adhesive Systems: An In Vitro Study. Int J Clin Pediatr Dent. 2023 Nov;16(Suppl
:272-277. doi: 10.5005/jp-journals-10005-2687. PMID: 38268635; PMCID: PMC10804296.
Laurent P, Camps J, De Méo M, Déjou J, About I. Induction of specific cell responses to a
Ca(3)SiO(5)-based posterior restorative material. Dent Mater. 2008 Nov;24(11):1486-94. doi:
1016/j.dental.2008.02.020. Epub 2008 Apr 29. PMID: 18448160.
Mortazavi V, Fathi M, Ataei E, Khodaeian N, Askari N. Shear bond strengths and morphological
evaluation of filled and unfilled adhesive interfaces to enamel and dentine. Int J Dent.
;2012:858459. doi: 10.1155/2012/858459. Epub 2012 Nov 6. PMID: 23209471; PMCID:
PMC3502849.
MTA-Plus Directions for use. Available from:
https://avalonbiomed.com/wp-content/uploads/2012/07/DFUs-MTAPLUS-6-30-12EN.pdf.
Accessed on 2024 May 14
Neelakantan P, Grotra D, Subbarao CV, Garcia-Godoy F. The shear bond strength of resin-based
composite to white mineral trioxide aggregate. J Am Dent Assoc. 2012 Aug;143(8):e40-5. doi:
14219/jada.archive.2012.0302. PMID: 22855910.
Nowicka A, Lipski M, Parafiniuk M, Sporniak-Tutak K, Lichota D, Kosierkiewicz A, Kaczmarek
W, Buczkowska-Radlińska J. Response of human dental pulp capped with biodentine and mineral
trioxide aggregate. J Endod. 2013 Jun;39(6):743-7. doi: 10.1016/j.joen.2013.01.005. Epub 2013
Apr 10. PMID: 23683272.
Odabaş ME, Bani M, Tirali RE. Shear bond strengths of different adhesive systems to biodentine.
ScientificWorldJournal. 2013 Oct 10;2013:626103. doi: 10.1155/2013/626103. PMID: 24222742;
PMCID: PMC3809944
Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part
III: Clinical applications, drawbacks, and mechanism of action. J Endod. 2010 Mar;36(3):400-13.
doi: 10.1016/j.joen.2009.09.009. PMID: 20171353.
Pashley EL, Zhang Y, Lockwood PE, Rueggeberg FA, Pashley DH. Effects of HEMA on water
evaporation from water-HEMA mixtures. Dent Mater. 1998 Jan;14(1):6-10. doi:
1016/s0109-5641(98)00003-7. PMID: 9972145.
Raina A, Sawhny A, Paul S, Nandamuri S. Comparative evaluation of the bond strength of
self-adhering and bulk-fill flowable composites to MTA Plus, Dycal, Biodentine, and TheraCal:
an in vitro study. Restor Dent Endod. 2020 Jan 8;45(1):e10. doi: 10.5395/rde.2020.45. e10.
PMID: 32110539; PMCID: PMC7030959.
Rajasekharan S, Martens LC, Cauwels RG, Verbeeck RM. Biodentine™ material characteristics
and clinical applications: a review of the literature. Eur Arch Paediatr Dent. 2014
Jun;15(3):147-58. doi: 10.1007/s40368-014-0114-3. Epub 2014 Mar 11. PMID: 24615290.
Scientific documentation Adper Single Bond 2. Available at https://www.
multimedia.3m.com/mws/media/276868O/adper-single-bond-2-technical-profile.pdf. Accessed
May 23
Scientific documentation of Clearfil SE Bond. Available at
https://www.kuraray-dental.eu/...Manuals/se_bond_scientific_folder_10_years_anniversary.
Accessed 2024 May 23
Scientific documentation Tetric–N-Bond Universal. Available at https://www.
asia.ivoclarvivadent.com/zoolu-website/media/document/.../Tetric+N-Bond+Universal. Accessed
May 23
Shin JH, Jang JH, Park SH, Kim E. Effect of mineral trioxide aggregate surface treatments on
morphology and bond strength to composite resin. J Endod. 2014 Aug;40(8):1210-6. doi:
1016/j.joen.2014.01.027. Epub 2014 Apr 13. PMID: 25069935.
Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new
root-end filling material. J Endod. 1995 Jul;21(7):349-53. doi: 10.1016/S0099-2399(06)80967-2.
PMID: 7499973.
Torabinejad M, Parirokh M. Mineral trioxide aggregate: a comprehensive literature review--part
II: leakage and biocompatibility investigations. J Endod. 2010 Feb;36(2):190-202. doi:
1016/j.joen.2009.09.010. PMID: 20113774.
Tran XV, Gorin C, Willig C, Baroukh B, Pellat B, Decup F, Opsahl Vital S, Chaussain C,
Boukpessi T. Effect of a calcium-silicate-based restorative cement on pulp repair. J Dent Res.
Dec;91(12):1166-71. doi: 10.1177/0022034512460833. Epub 2012 Sep 13. PMID:
Tulumbaci F, Almaz ME, Arikan V, Mutluay MS. Shear bond strength of different restorative
materials to mineral trioxide aggregate and Biodentine. J Conserv Dent. 2017
Sep-Oct;20(5):292-296. doi: 10.4103/JCD.JCD_97_17. PMID: 29386773; PMCID:
PMC5767820.
Tunç ES, Sönmez IS, Bayrak S, Eğilmez T. The evaluation of bond strength of a composite and a
compomer to white mineral trioxide aggregate with two different bonding systems. J Endod.
May;34(5):603-5. doi: 10.1016/j.joen.2008.02.026. PMID: 18436044.
Zhou HM, Shen Y, Wang ZJ, Li L, Zheng YF, Häkkinen L, Haapasalo M. In vitro cytotoxicity
evaluation of a novel root repair material. J Endod. 2013 Apr;39(4):478-83. doi:
1016/j.joen.2012.11.026. Epub 2013 Jan 11. PMID: 23522540.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Deepti Dua, Dr. Ankur

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.