AI and Radiomics

Exploring the Potential of Texture Analysis in Early Caries Diagnosis

Authors

  • Hashim Al-Hashimi Dr Hala Medical Group

Keywords:

Dental Caries, Caries Diagnosis, Digital Radiography, Ar tificial Intelligence (AI), Texture Analysis, Radiomics

Abstract

This paper presents a systematic literature review that explores the potential of integrating artificial intelligence and radiomics for the early detection of dental caries. Dental caries, a prevalent global health issue, often goes undetected in its early stages using traditional diagnostic methods such as visual-tactile examination and conventional radiographic imaging. These approaches may fail to consistently identify incipient lesions, leading to delayed treatment and progression of the disease. The integration of artificial intelligence and radiomics, which involves extracting quantitative features from medical images, presents a promising solution for enhancing early caries detection. Radiomics leverages texture analysis techniques to identify subtle changes within dental radiographs that are often imperceptible to the human eye. When combined with AI models, particularly convolutional neural networks, these systems can develop predictive algorithms that detect and characterize early-stage carious lesions with improved accuracy. This literature review explores the potential of AI-radiomic approaches in revolutionizing dental diagnostics by addressing limitations of traditional methods and providing a roadmap for clinical integration. We also discuss the challenges in implementing these technologies, such as data availability, methodological rigor, and ethical considerations, emphasizing the need for robust validation and interdisciplinary collaboration to achieve seamless integration and improved patient outcomes.

References

Abogazalah, N., & Ando, M. (2017, January 1). Alternative methods to visual and radiographic

examinations for approximal caries detection. Nihon University, 59(3), 315-322.

https://doi.org/10.2334/josnusd.16-0595

Andanda, P. (2020, July 2). Ethical and legal governance of health-related research that use

digital data from user-generated online health content. Routledge, 23(8), 1154-1169.

https://doi.org/10.1080/1369118x.2019.1699591

Anil, S., Porwal, P., & Porwal, A. (2023, July 11). Transforming Dental Caries Diagnosis

Through Artificial Intelligence-Based Techniques. Cureus, Inc..

https://doi.org/10.7759/cureus.41694

Arabpou, S., Najafzadeh, E., Farnia, P., Ahmadian, A., Ghadiri, H., & Akhoundi, M S A. (2019,

June 17). Detection of Early Stages Dental Caries Using Photoacoustic Signals: The Simulation

Study. Knowledge E. https://doi.org/10.18502/fbt.v6i1.1101

Armfield, J M., Ketting, M., Chrisopoulos, S., & Baker, S R. (2017, March 27). Do people trust

dentists? Development of the Dentist Trust Scale. Wiley, 62(3), 355-362.

https://doi.org/10.1111/adj.12514

Avanzo, M., Wei, L., Stancanello, J., Vallières, M., Rao, A., Morin, O., Mattonen, S A., & Naqa,

I E. (2020, May 1). Machine and deep learning methods for radiomics. Wiley, 47(5).

https://doi.org/10.1002/mp.13678

Baltacıoğlu, İ H., & Orhan, K. (2017, November 16). Comparison of diagnostic methods for

early interproximal caries detection with near-infrared light transillumination: an in vivo study.

BioMed Central, 17(1). https://doi.org/10.1186/s12903-017-0421-2

Bernauer, S A., Zitzmann, N U., & Joda, T. (2021, October 5). The Use and Performance of

Artificial Intelligence in Prosthodontics: A Systematic Review. Multidisciplinary Digital

Publishing Institute, 21(19), 6628-6628. https://doi.org/10.3390/s21196628

Bounds, A D., & Girkin, J M. (2021, January 28). Early stage dental caries detection using near

infrared spatial frequency domain imaging. Nature Portfolio, 11(1).

https://doi.org/10.1038/s41598-021-81872-7

Brady, A P., & Neri, E. (2020, April 17). Artificial Intelligence in Radiology—Ethical

Considerations. Multidisciplinary Digital Publishing Institute, 10(4), 231-231.

https://doi.org/10.3390/diagnostics10040231

Casalegno, F., Newton, T., Daher, R., Abdelaziz, M., Lodi-Rizzini, A., Schürmann, F., Krejci, I.,

& Markram, H. (2019, August 26). Caries Detection with Near-Infrared Transillumination Using

Deep Learning. SAGE Publishing, 98(11), 1227-1233.

https://doi.org/10.1177/0022034519871884

Chen, I D S., Yang, C., Chen, M., Chen, M., Weng, R., & Yeh, C. (2023, August 1). Deep

Learning-Based Recognition of Periodontitis and Dental Caries in Dental X-ray Images.

Multidisciplinary Digital Publishing Institute, 10(8), 911-911.

https://doi.org/10.3390/bioengineering10080911

Chen, X., Guo, J., Ye, J., Zhang, M., & Liang, Y. (2022, January 1). Detection of Proximal Caries

Lesions on Bitewing Radiographs Using Deep Learning Method. Karger Publishers, 56(5-6),

-463. https://doi.org/10.1159/000527418

Dave, M., & Patel, N. (2023, May 26). Artificial intelligence in healthcare and education.

Springer Nature, 234(10), 761-764. https://doi.org/10.1038/s41415-023-5845-2

Dhopte, A., & Bagde, H. (2023, June 30). Smart Smile: Revolutionizing Dentistry With Artificial

Intelligence. Cureus, Inc.. https://doi.org/10.7759/cureus.41227

Díaz, O., Kushibar, K., Osuala, R., Linardos, A., Garrucho, L., Igual, L., Radeva, P., Prior, F.,

Gkontra, P., & Lekadir, K. (2021, March 1). Data preparation for artificial intelligence in medical

imaging: A comprehensive guide to open-access platforms and tools. Elsevier BV, 83, 25-37.

https://doi.org/10.1016/j.ejmp.2021.02.007

Dragan, I F., Dalessandri, D., Johnson, L., Tucker, A S., & Walmsley, A D. (2018, March 1).

Impact of scientific and technological advances. Wiley, 22(S1), 17-20.

https://doi.org/10.1111/eje.12342

Duong, D L., Kabir, M H., & Kuo, R F. (2021, April 1). Automated caries detection with

smartphone color photography using machine learning. SAGE Publishing, 27(2),

-146045822110075. https://doi.org/10.1177/14604582211007530

Duong, D L., Nguyen, Q D N., Tong, M S., Vu, M T., Lim, J D., & Kuo, R F. (2021, June 22).

Proof-of-Concept Study on an Automatic Computational System in Detecting and Classifying

Occlusal Caries Lesions from Smartphone Color Images of Unrestored Extracted Teeth.

Multidisciplinary Digital Publishing Institute, 11(7), 1136-1136.

https://doi.org/10.3390/diagnostics11071136

Elmahdy, M., & Sebro, R. (2023, February 10). Radiomics analysis in medical imaging research.

Wiley, 70(1), 3-7. https://doi.org/10.1002/jmrs.662

Geis, J R., Brady, A P., Wu, C C., Spencer, J., Ranschaert, E., Jaremko, J L., Langer, S G., Kitts,

A B., Birch, J., Shields, W., Genderen, R V D H V., Kotter, E., Gichoya, J W., Cook, T S.,

Morgan, M B., Tang, A., Safdar, N., & Kohli, M D. (2019, October 1). Ethics of Artificial

Intelligence in Radiology: Summary of the Joint European and North American Multisociety

Statement. Radiological Society of North America, 293(2), 436-440.

https://doi.org/10.1148/radiol.2019191586

Gómez, J. (2015, September 15). Detection and diagnosis of the early caries lesion. BioMed

Central, 15(S1). https://doi.org/10.1186/1472-6831-15-s1-s3

Haghanifar, A., Majdabadi, M M., & Ko, S. (2020, January 1). PaXNet: Dental Caries Detection

in Panoramic X-ray using Ensemble Transfer Learning and Capsule Classifier. Cornell

University. https://doi.org/10.48550/arxiv.2012.13666

Hirsch, L., Huang, Y., Makse, H A., Martinez, D F., Hughes, M., Eskreis‐Winkler, S., Pinker, K.,

Morris, E A., Parra, L C., & Sutton, E J. (2023, January 1). Predicting breast cancer with AI for

individual risk-adjusted MRI screening and early detection. Cornell University.

https://doi.org/10.48550/arXiv.2312.

Huerta, J., Bermúdez, J M A., Quinteros, D A., Allemandi, D A., & Palma, S D. (2016, January

. New trends, challenges, and opportunities in the use of nanotechnology in restorative

dentistry. Elsevier BV, 133-160. https://doi.org/10.1016/b978-0-323-42867-5.00006-0

Hung, K F., Yeung, A W K., Tanaka, R., & Bornstein, M M. (2020, June 19). Current

Applications, Opportunities, and Limitations of AI for 3D Imaging in Dental Research and

Practice. Multidisciplinary Digital Publishing Institute, 17(12), 4424-4424.

https://doi.org/10.3390/ijerph17124424

Joda, T., Bornstein, M M., Jung, R E., Ferrari, M., Waltimo, T., & Zitzmann, N U. (2020, March

. Recent Trends and Future Direction of Dental Research in the Digital Era. Multidisciplinary

Digital Publishing Institute, 17(6), 1987-1987. https://doi.org/10.3390/ijerph17061987

Joda, T., Yeung, A W K., Hung, K F., Zitzmann, N U., & Bornstein, M M. (2020, December 16).

Disruptive Innovation in Dentistry: What It Is and What Could Be Next. SAGE Publishing,

(5), 448-453. https://doi.org/10.1177/0022034520978774

Kelly, C., Karthikesalingam, A., Suleyman, M., Corrado, G S., & King, D. (2019, October 29).

Key challenges for delivering clinical impact with artificial intelligence. BioMed Central, 17(1).

https://doi.org/10.1186/s12916-019-1426-2

Kiseleva, A., Kotzinos, D., & Hert, P D. (2022, May 30). Transparency of AI in Healthcare as a

Multilayered System of Accountabilities: Between Legal Requirements and Technical

Limitations. Frontiers Media, 5. https://doi.org/10.3389/frai.2022.879603

Koçak, B., Durmaz, E Ş., Ateş, E., & Kılıçkesmez, Ö. (2019, September 4). Radiomics with

artificial intelligence: a practical guide for beginners. , 25(6), 485-495.

https://doi.org/10.5152/dir.2019.19321

Kühnisch, J., Meyer, O., Hesenius, M., Hickel, R., & Gruhn, V. (2021, August 20). Caries

Detection on Intraoral Images Using Artificial Intelligence. SAGE Publishing, 101(2), 158-165.

https://doi.org/10.1177/00220345211032524

Lee, J., Kim, D., Jeong, S., & Choi, S. (2018, July 26). Detection and diagnosis of dental caries

using a deep learning-based convolutional neural network algorithm. Elsevier BV, 77, 106-111.

https://doi.org/10.1016/j.jdent.2018.07.015

Lee, S., Oh, S., Jo, J., Kang, S., Shin, Y., & Park, J. (2021, August 19). Deep learning for early

dental caries detection in bitewing radiographs. Nature Portfolio, 11(1).

https://doi.org/10.1038/s41598-021-96368-7

Leite, A F., Vasconcelos, K D F., Willems, H., & Jacobs, R. (2020, January 17). Radiomics and

Machine Learning in Oral Healthcare. Wiley, 14(3). https://doi.org/10.1002/prca.201900040

Lin, X., Hong, D., Zhang, D., Huang, M., & Yu, H. (2022, April 21). Detecting Proximal Caries

on Periapical Radiographs Using Convolutional Neural Networks with Different Training

Strategies on Small Datasets. Multidisciplinary Digital Publishing Institute, 12(5), 1047-1047.

https://doi.org/10.3390/diagnostics12051047

Marchini, L., Ettinger, R L., & Hartshorn, J. (2019, July 17). Personalized Dental Caries

Management for Frail Older Adults and Persons with Special Needs. Elsevier BV, 63(4),

-651. https://doi.org/10.1016/j.cden.2019.06.003

Mayta‐Tovalino, F., Munive-Degregori, A., Luza, S., Cárdenas-Mariño, F., Guerrero, M E., &

Barja-Oré, J. (2023, January 1). Applications and perspectives of artificial intelligence, machine

learning and “dentronics” in dentistry: A literature review. Medknow, 13(1), 1-1.

https://doi.org/10.4103/jispcd.jispcd_35_22

Mohan, K., & Fenn, S M. (2023, May 8). Artificial Intelligence and Its Theranostic Applications

in Dentistry. Cureus, Inc.. https://doi.org/10.7759/cureus.38711

Musri, N., Christie, B., Ichwan, S J A., & Cahyanto, A. (2021, January 1). Deep learning

convolutional neural network algorithms for the early detection and diagnosis of dental caries on

periapical radiographs: A systematic review. , 51(3), 237-237.

https://doi.org/10.5624/isd.20210074

Najjar, R. (2023, August 25). Redefining Radiology: A Review of Artificial Intelligence

Integration in Medical Imaging. Multidisciplinary Digital Publishing Institute, 13(17),

-2760. https://doi.org/10.3390/diagnostics13172760

Nishida, N., & Kudo, M. (2020, December 21). Artificial Intelligence in Medical Imaging and Its

Application in Sonography for the Management of Liver Tumor. Frontiers Media, 10.

https://doi.org/10.3389/fonc.2020.594580

Norori, N., Hu, Q., Aellen, F M., Faraci, F D., & Tzovara, A. (2021, October 1). Addressing bias

in big data and AI for health care: A call for open science. Elsevier BV, 2(10), 100347-100347.

https://doi.org/10.1016/j.patter.2021.100347

Oikonomou, E K., Siddique, M., & Antoniades, C. (2020, January 23). Artificial intelligence in

medical imaging: A radiomic guide to precision phenotyping of cardiovascular disease. Oxford

University Press, 116(13), 2040-2054. https://doi.org/10.1093/cvr/cvaa021

Panch, T., Szolovits, P., & Atun, R. (2018, October 21). Artificial intelligence, machine learning

and health systems. Edinburgh University Global Health Society, 8(2).

https://doi.org/10.7189/jogh.08.020303

Park, Y H., Kim, S H., & Choi, Y Y. (2021, August 15). Prediction Models of Early Childhood

Caries Based on Machine Learning Algorithms. Multidisciplinary Digital Publishing Institute,

(16), 8613-8613. https://doi.org/10.3390/ijerph18168613

Pun, M H J. (2023, September 5). Real-Time Caries Detection of Bitewing Radiographs Using a

Mobile Phone and an Artificial Neural Network: A Pilot Study. Multidisciplinary Digital

Publishing Institute, 3(3), 437-449. https://doi.org/10.3390/oral3030035

Qayyum, A., Tahir, A., Butt, M A., Luke, A M., Abbas, H., Qadir, J., Arshad, K., Assaleh, K.,

Imran, M A., & Abbasi, Q H. (2023, January 13). Dental caries detection using a semi-supervised

learning approach. Nature Portfolio, 13(1). https://doi.org/10.1038/s41598-023-27808-9

Ros, A G C., Gehrung, S., Krois, J., Chaurasia, A., Rossi, J G., Gaudin, R., Elhennawy, K., &

Schwendicke, F. (2020, July 4). Detecting caries lesions of different radiographic extension on

bitewings using deep learning. Elsevier BV, 100, 103425-103425.

https://doi.org/10.1016/j.jdent.2020.103425

Saffan, A D A. (2023, August 14). Current Approaches to Diagnosis of Early Proximal Carious

Lesion: A Literature Review. Cureus, Inc.. https://doi.org/10.7759/cureus.43489

Schwendicke, F., Samek, W., & Krois, J. (2020, April 21). Artificial Intelligence in Dentistry:

Chances and Challenges. SAGE Publishing, 99(7), 769-774.

https://doi.org/10.1177/0022034520915714

Starikov, A V., Al’Aref, S J., Singh, G., & Min, J K. (2018, April 4). Artificial intelligence in

clinical imaging: An introduction. Elsevier BV, 49, vii-ix.

https://doi.org/10.1016/j.clinimag.2018.04.001

Sultan, A. (2023, January 30). Smile! Silver Diamine Fluoride (SDF) can make it easy. , 4(2),

-41. https://doi.org/10.12944/edj.04.02.02

Takahashi, T., Nozaki, K., Gonda, T., Mameno, T., & Ikebe, K. (2021, January 21). Deep

learning-based detection of dental prostheses and restorations. Nature Portfolio, 11(1).

https://doi.org/10.1038/s41598-021-81202-x

Talpur, S., Azim, F., Rashid, M., Syed, S A., Talpur, B A., & Khan, S J. (2022, March 31). Uses

of Different Machine Learning Algorithms for Diagnosis of Dental Caries. Hindawi Publishing

Corporation, 2022, 1-13. https://doi.org/10.1155/2022/5032435

Thapa, C., & Camtepe, S. (2020, November 25). Precision health data: Requirements, challenges

and existing techniques for data security and privacy. Elsevier BV, 129, 104130-104130.

https://doi.org/10.1016/j.compbiomed.2020.104130

Umre, U., Sedani, S., Nikhade, P., & Bansod, A. (2022, October 20). A Case Report on the

Rehabilitation of Severely Worn Teeth Using a Custom-Made Cast Post. Cureus, Inc..

https://doi.org/10.7759/cureus.30528

Wen, L., Liang, Y., Zhang, X., Liu, C., He, L., Miao, L., & Sun, W. (2021, August 19). A deep

learning approach to automatic gingivitis screening based on classification and localization in

RGB photos. Nature Portfolio, 11(1). https://doi.org/10.1038/s41598-021-96091-3

Yılmaz, H., & Keleş, S. (2017, November 21). Recent Methods for Diagnosis of Dental Caries in

Dentistry. Galenos Yayinevi, 19(1), 1-8. https://doi.org/10.4274/meandros.21931

Young, D A., Nový, B B., Zeller, G G., Hale, R G., Hart, T C., Truelove, E L., Ekstrand, K R.,

Featherstone, J., Fontana, M., Ismaïl, A I., Kuehne, J C., Longbottom, C., Pitts, N., Sarrett, D C.,

Wright, T., Mark, A M., & Beltrán‐Aguilar, E D. (2015, January 26). The American Dental

Association Caries Classification System for Clinical Practice. Elsevier BV, 146(2), 79-86.

https://doi.org/10.1016/j.adaj.2014.11.018

Zheng, L., Wang, H., Li, M., Chen, Q., Zhang, Y., & Zhang, H. (2021, May 1). Artificial

intelligence in digital cariology: a new tool for the diagnosis of deep caries and pulpitis using

convolutional neural networks. AME Publishing Company, 9(9), 763-763.

https://doi.org/10.21037/atm-21-119

Zhu, Y., Ng, C., Lê, O., Ho, Y., & Fried, D. (2023, August 31). Diagnostic Performance of

Multispectral SWIR Transillumination and Reflectance Imaging for Caries Detection.

Multidisciplinary Digital Publishing Institute, 13(17), 2824-2824.

https://doi.org/10.3390/diagnostics13172824

Downloads

Published

2025-01-26

How to Cite

Al-Hashimi, H. (2025). AI and Radiomics: Exploring the Potential of Texture Analysis in Early Caries Diagnosis. The International Journal of Comprehensive Health, Medicine, & Dentistry, 1(1), 1–23. Retrieved from https://halafoundation.com/index.php/ijchmd/article/view/20

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)