AI and Radiomics
Exploring the Potential of Texture Analysis in Early Caries Diagnosis
Keywords:
Dental Caries, Caries Diagnosis, Digital Radiography, Ar tificial Intelligence (AI), Texture Analysis, RadiomicsAbstract
This paper presents a systematic literature review that explores the potential of integrating artificial intelligence and radiomics for the early detection of dental caries. Dental caries, a prevalent global health issue, often goes undetected in its early stages using traditional diagnostic methods such as visual-tactile examination and conventional radiographic imaging. These approaches may fail to consistently identify incipient lesions, leading to delayed treatment and progression of the disease. The integration of artificial intelligence and radiomics, which involves extracting quantitative features from medical images, presents a promising solution for enhancing early caries detection. Radiomics leverages texture analysis techniques to identify subtle changes within dental radiographs that are often imperceptible to the human eye. When combined with AI models, particularly convolutional neural networks, these systems can develop predictive algorithms that detect and characterize early-stage carious lesions with improved accuracy. This literature review explores the potential of AI-radiomic approaches in revolutionizing dental diagnostics by addressing limitations of traditional methods and providing a roadmap for clinical integration. We also discuss the challenges in implementing these technologies, such as data availability, methodological rigor, and ethical considerations, emphasizing the need for robust validation and interdisciplinary collaboration to achieve seamless integration and improved patient outcomes.
References
Abogazalah, N., & Ando, M. (2017, January 1). Alternative methods to visual and radiographic
examinations for approximal caries detection. Nihon University, 59(3), 315-322.
https://doi.org/10.2334/josnusd.16-0595
Andanda, P. (2020, July 2). Ethical and legal governance of health-related research that use
digital data from user-generated online health content. Routledge, 23(8), 1154-1169.
https://doi.org/10.1080/1369118x.2019.1699591
Anil, S., Porwal, P., & Porwal, A. (2023, July 11). Transforming Dental Caries Diagnosis
Through Artificial Intelligence-Based Techniques. Cureus, Inc..
https://doi.org/10.7759/cureus.41694
Arabpou, S., Najafzadeh, E., Farnia, P., Ahmadian, A., Ghadiri, H., & Akhoundi, M S A. (2019,
June 17). Detection of Early Stages Dental Caries Using Photoacoustic Signals: The Simulation
Study. Knowledge E. https://doi.org/10.18502/fbt.v6i1.1101
Armfield, J M., Ketting, M., Chrisopoulos, S., & Baker, S R. (2017, March 27). Do people trust
dentists? Development of the Dentist Trust Scale. Wiley, 62(3), 355-362.
https://doi.org/10.1111/adj.12514
Avanzo, M., Wei, L., Stancanello, J., Vallières, M., Rao, A., Morin, O., Mattonen, S A., & Naqa,
I E. (2020, May 1). Machine and deep learning methods for radiomics. Wiley, 47(5).
https://doi.org/10.1002/mp.13678
Baltacıoğlu, İ H., & Orhan, K. (2017, November 16). Comparison of diagnostic methods for
early interproximal caries detection with near-infrared light transillumination: an in vivo study.
BioMed Central, 17(1). https://doi.org/10.1186/s12903-017-0421-2
Bernauer, S A., Zitzmann, N U., & Joda, T. (2021, October 5). The Use and Performance of
Artificial Intelligence in Prosthodontics: A Systematic Review. Multidisciplinary Digital
Publishing Institute, 21(19), 6628-6628. https://doi.org/10.3390/s21196628
Bounds, A D., & Girkin, J M. (2021, January 28). Early stage dental caries detection using near
infrared spatial frequency domain imaging. Nature Portfolio, 11(1).
https://doi.org/10.1038/s41598-021-81872-7
Brady, A P., & Neri, E. (2020, April 17). Artificial Intelligence in Radiology—Ethical
Considerations. Multidisciplinary Digital Publishing Institute, 10(4), 231-231.
https://doi.org/10.3390/diagnostics10040231
Casalegno, F., Newton, T., Daher, R., Abdelaziz, M., Lodi-Rizzini, A., Schürmann, F., Krejci, I.,
& Markram, H. (2019, August 26). Caries Detection with Near-Infrared Transillumination Using
Deep Learning. SAGE Publishing, 98(11), 1227-1233.
https://doi.org/10.1177/0022034519871884
Chen, I D S., Yang, C., Chen, M., Chen, M., Weng, R., & Yeh, C. (2023, August 1). Deep
Learning-Based Recognition of Periodontitis and Dental Caries in Dental X-ray Images.
Multidisciplinary Digital Publishing Institute, 10(8), 911-911.
https://doi.org/10.3390/bioengineering10080911
Chen, X., Guo, J., Ye, J., Zhang, M., & Liang, Y. (2022, January 1). Detection of Proximal Caries
Lesions on Bitewing Radiographs Using Deep Learning Method. Karger Publishers, 56(5-6),
-463. https://doi.org/10.1159/000527418
Dave, M., & Patel, N. (2023, May 26). Artificial intelligence in healthcare and education.
Springer Nature, 234(10), 761-764. https://doi.org/10.1038/s41415-023-5845-2
Dhopte, A., & Bagde, H. (2023, June 30). Smart Smile: Revolutionizing Dentistry With Artificial
Intelligence. Cureus, Inc.. https://doi.org/10.7759/cureus.41227
Díaz, O., Kushibar, K., Osuala, R., Linardos, A., Garrucho, L., Igual, L., Radeva, P., Prior, F.,
Gkontra, P., & Lekadir, K. (2021, March 1). Data preparation for artificial intelligence in medical
imaging: A comprehensive guide to open-access platforms and tools. Elsevier BV, 83, 25-37.
https://doi.org/10.1016/j.ejmp.2021.02.007
Dragan, I F., Dalessandri, D., Johnson, L., Tucker, A S., & Walmsley, A D. (2018, March 1).
Impact of scientific and technological advances. Wiley, 22(S1), 17-20.
https://doi.org/10.1111/eje.12342
Duong, D L., Kabir, M H., & Kuo, R F. (2021, April 1). Automated caries detection with
smartphone color photography using machine learning. SAGE Publishing, 27(2),
-146045822110075. https://doi.org/10.1177/14604582211007530
Duong, D L., Nguyen, Q D N., Tong, M S., Vu, M T., Lim, J D., & Kuo, R F. (2021, June 22).
Proof-of-Concept Study on an Automatic Computational System in Detecting and Classifying
Occlusal Caries Lesions from Smartphone Color Images of Unrestored Extracted Teeth.
Multidisciplinary Digital Publishing Institute, 11(7), 1136-1136.
https://doi.org/10.3390/diagnostics11071136
Elmahdy, M., & Sebro, R. (2023, February 10). Radiomics analysis in medical imaging research.
Wiley, 70(1), 3-7. https://doi.org/10.1002/jmrs.662
Geis, J R., Brady, A P., Wu, C C., Spencer, J., Ranschaert, E., Jaremko, J L., Langer, S G., Kitts,
A B., Birch, J., Shields, W., Genderen, R V D H V., Kotter, E., Gichoya, J W., Cook, T S.,
Morgan, M B., Tang, A., Safdar, N., & Kohli, M D. (2019, October 1). Ethics of Artificial
Intelligence in Radiology: Summary of the Joint European and North American Multisociety
Statement. Radiological Society of North America, 293(2), 436-440.
https://doi.org/10.1148/radiol.2019191586
Gómez, J. (2015, September 15). Detection and diagnosis of the early caries lesion. BioMed
Central, 15(S1). https://doi.org/10.1186/1472-6831-15-s1-s3
Haghanifar, A., Majdabadi, M M., & Ko, S. (2020, January 1). PaXNet: Dental Caries Detection
in Panoramic X-ray using Ensemble Transfer Learning and Capsule Classifier. Cornell
University. https://doi.org/10.48550/arxiv.2012.13666
Hirsch, L., Huang, Y., Makse, H A., Martinez, D F., Hughes, M., Eskreis‐Winkler, S., Pinker, K.,
Morris, E A., Parra, L C., & Sutton, E J. (2023, January 1). Predicting breast cancer with AI for
individual risk-adjusted MRI screening and early detection. Cornell University.
https://doi.org/10.48550/arXiv.2312.
Huerta, J., Bermúdez, J M A., Quinteros, D A., Allemandi, D A., & Palma, S D. (2016, January
. New trends, challenges, and opportunities in the use of nanotechnology in restorative
dentistry. Elsevier BV, 133-160. https://doi.org/10.1016/b978-0-323-42867-5.00006-0
Hung, K F., Yeung, A W K., Tanaka, R., & Bornstein, M M. (2020, June 19). Current
Applications, Opportunities, and Limitations of AI for 3D Imaging in Dental Research and
Practice. Multidisciplinary Digital Publishing Institute, 17(12), 4424-4424.
https://doi.org/10.3390/ijerph17124424
Joda, T., Bornstein, M M., Jung, R E., Ferrari, M., Waltimo, T., & Zitzmann, N U. (2020, March
. Recent Trends and Future Direction of Dental Research in the Digital Era. Multidisciplinary
Digital Publishing Institute, 17(6), 1987-1987. https://doi.org/10.3390/ijerph17061987
Joda, T., Yeung, A W K., Hung, K F., Zitzmann, N U., & Bornstein, M M. (2020, December 16).
Disruptive Innovation in Dentistry: What It Is and What Could Be Next. SAGE Publishing,
(5), 448-453. https://doi.org/10.1177/0022034520978774
Kelly, C., Karthikesalingam, A., Suleyman, M., Corrado, G S., & King, D. (2019, October 29).
Key challenges for delivering clinical impact with artificial intelligence. BioMed Central, 17(1).
https://doi.org/10.1186/s12916-019-1426-2
Kiseleva, A., Kotzinos, D., & Hert, P D. (2022, May 30). Transparency of AI in Healthcare as a
Multilayered System of Accountabilities: Between Legal Requirements and Technical
Limitations. Frontiers Media, 5. https://doi.org/10.3389/frai.2022.879603
Koçak, B., Durmaz, E Ş., Ateş, E., & Kılıçkesmez, Ö. (2019, September 4). Radiomics with
artificial intelligence: a practical guide for beginners. , 25(6), 485-495.
https://doi.org/10.5152/dir.2019.19321
Kühnisch, J., Meyer, O., Hesenius, M., Hickel, R., & Gruhn, V. (2021, August 20). Caries
Detection on Intraoral Images Using Artificial Intelligence. SAGE Publishing, 101(2), 158-165.
https://doi.org/10.1177/00220345211032524
Lee, J., Kim, D., Jeong, S., & Choi, S. (2018, July 26). Detection and diagnosis of dental caries
using a deep learning-based convolutional neural network algorithm. Elsevier BV, 77, 106-111.
https://doi.org/10.1016/j.jdent.2018.07.015
Lee, S., Oh, S., Jo, J., Kang, S., Shin, Y., & Park, J. (2021, August 19). Deep learning for early
dental caries detection in bitewing radiographs. Nature Portfolio, 11(1).
https://doi.org/10.1038/s41598-021-96368-7
Leite, A F., Vasconcelos, K D F., Willems, H., & Jacobs, R. (2020, January 17). Radiomics and
Machine Learning in Oral Healthcare. Wiley, 14(3). https://doi.org/10.1002/prca.201900040
Lin, X., Hong, D., Zhang, D., Huang, M., & Yu, H. (2022, April 21). Detecting Proximal Caries
on Periapical Radiographs Using Convolutional Neural Networks with Different Training
Strategies on Small Datasets. Multidisciplinary Digital Publishing Institute, 12(5), 1047-1047.
https://doi.org/10.3390/diagnostics12051047
Marchini, L., Ettinger, R L., & Hartshorn, J. (2019, July 17). Personalized Dental Caries
Management for Frail Older Adults and Persons with Special Needs. Elsevier BV, 63(4),
-651. https://doi.org/10.1016/j.cden.2019.06.003
Mayta‐Tovalino, F., Munive-Degregori, A., Luza, S., Cárdenas-Mariño, F., Guerrero, M E., &
Barja-Oré, J. (2023, January 1). Applications and perspectives of artificial intelligence, machine
learning and “dentronics” in dentistry: A literature review. Medknow, 13(1), 1-1.
https://doi.org/10.4103/jispcd.jispcd_35_22
Mohan, K., & Fenn, S M. (2023, May 8). Artificial Intelligence and Its Theranostic Applications
in Dentistry. Cureus, Inc.. https://doi.org/10.7759/cureus.38711
Musri, N., Christie, B., Ichwan, S J A., & Cahyanto, A. (2021, January 1). Deep learning
convolutional neural network algorithms for the early detection and diagnosis of dental caries on
periapical radiographs: A systematic review. , 51(3), 237-237.
https://doi.org/10.5624/isd.20210074
Najjar, R. (2023, August 25). Redefining Radiology: A Review of Artificial Intelligence
Integration in Medical Imaging. Multidisciplinary Digital Publishing Institute, 13(17),
-2760. https://doi.org/10.3390/diagnostics13172760
Nishida, N., & Kudo, M. (2020, December 21). Artificial Intelligence in Medical Imaging and Its
Application in Sonography for the Management of Liver Tumor. Frontiers Media, 10.
https://doi.org/10.3389/fonc.2020.594580
Norori, N., Hu, Q., Aellen, F M., Faraci, F D., & Tzovara, A. (2021, October 1). Addressing bias
in big data and AI for health care: A call for open science. Elsevier BV, 2(10), 100347-100347.
https://doi.org/10.1016/j.patter.2021.100347
Oikonomou, E K., Siddique, M., & Antoniades, C. (2020, January 23). Artificial intelligence in
medical imaging: A radiomic guide to precision phenotyping of cardiovascular disease. Oxford
University Press, 116(13), 2040-2054. https://doi.org/10.1093/cvr/cvaa021
Panch, T., Szolovits, P., & Atun, R. (2018, October 21). Artificial intelligence, machine learning
and health systems. Edinburgh University Global Health Society, 8(2).
https://doi.org/10.7189/jogh.08.020303
Park, Y H., Kim, S H., & Choi, Y Y. (2021, August 15). Prediction Models of Early Childhood
Caries Based on Machine Learning Algorithms. Multidisciplinary Digital Publishing Institute,
(16), 8613-8613. https://doi.org/10.3390/ijerph18168613
Pun, M H J. (2023, September 5). Real-Time Caries Detection of Bitewing Radiographs Using a
Mobile Phone and an Artificial Neural Network: A Pilot Study. Multidisciplinary Digital
Publishing Institute, 3(3), 437-449. https://doi.org/10.3390/oral3030035
Qayyum, A., Tahir, A., Butt, M A., Luke, A M., Abbas, H., Qadir, J., Arshad, K., Assaleh, K.,
Imran, M A., & Abbasi, Q H. (2023, January 13). Dental caries detection using a semi-supervised
learning approach. Nature Portfolio, 13(1). https://doi.org/10.1038/s41598-023-27808-9
Ros, A G C., Gehrung, S., Krois, J., Chaurasia, A., Rossi, J G., Gaudin, R., Elhennawy, K., &
Schwendicke, F. (2020, July 4). Detecting caries lesions of different radiographic extension on
bitewings using deep learning. Elsevier BV, 100, 103425-103425.
https://doi.org/10.1016/j.jdent.2020.103425
Saffan, A D A. (2023, August 14). Current Approaches to Diagnosis of Early Proximal Carious
Lesion: A Literature Review. Cureus, Inc.. https://doi.org/10.7759/cureus.43489
Schwendicke, F., Samek, W., & Krois, J. (2020, April 21). Artificial Intelligence in Dentistry:
Chances and Challenges. SAGE Publishing, 99(7), 769-774.
https://doi.org/10.1177/0022034520915714
Starikov, A V., Al’Aref, S J., Singh, G., & Min, J K. (2018, April 4). Artificial intelligence in
clinical imaging: An introduction. Elsevier BV, 49, vii-ix.
https://doi.org/10.1016/j.clinimag.2018.04.001
Sultan, A. (2023, January 30). Smile! Silver Diamine Fluoride (SDF) can make it easy. , 4(2),
-41. https://doi.org/10.12944/edj.04.02.02
Takahashi, T., Nozaki, K., Gonda, T., Mameno, T., & Ikebe, K. (2021, January 21). Deep
learning-based detection of dental prostheses and restorations. Nature Portfolio, 11(1).
https://doi.org/10.1038/s41598-021-81202-x
Talpur, S., Azim, F., Rashid, M., Syed, S A., Talpur, B A., & Khan, S J. (2022, March 31). Uses
of Different Machine Learning Algorithms for Diagnosis of Dental Caries. Hindawi Publishing
Corporation, 2022, 1-13. https://doi.org/10.1155/2022/5032435
Thapa, C., & Camtepe, S. (2020, November 25). Precision health data: Requirements, challenges
and existing techniques for data security and privacy. Elsevier BV, 129, 104130-104130.
https://doi.org/10.1016/j.compbiomed.2020.104130
Umre, U., Sedani, S., Nikhade, P., & Bansod, A. (2022, October 20). A Case Report on the
Rehabilitation of Severely Worn Teeth Using a Custom-Made Cast Post. Cureus, Inc..
https://doi.org/10.7759/cureus.30528
Wen, L., Liang, Y., Zhang, X., Liu, C., He, L., Miao, L., & Sun, W. (2021, August 19). A deep
learning approach to automatic gingivitis screening based on classification and localization in
RGB photos. Nature Portfolio, 11(1). https://doi.org/10.1038/s41598-021-96091-3
Yılmaz, H., & Keleş, S. (2017, November 21). Recent Methods for Diagnosis of Dental Caries in
Dentistry. Galenos Yayinevi, 19(1), 1-8. https://doi.org/10.4274/meandros.21931
Young, D A., Nový, B B., Zeller, G G., Hale, R G., Hart, T C., Truelove, E L., Ekstrand, K R.,
Featherstone, J., Fontana, M., Ismaïl, A I., Kuehne, J C., Longbottom, C., Pitts, N., Sarrett, D C.,
Wright, T., Mark, A M., & Beltrán‐Aguilar, E D. (2015, January 26). The American Dental
Association Caries Classification System for Clinical Practice. Elsevier BV, 146(2), 79-86.
https://doi.org/10.1016/j.adaj.2014.11.018
Zheng, L., Wang, H., Li, M., Chen, Q., Zhang, Y., & Zhang, H. (2021, May 1). Artificial
intelligence in digital cariology: a new tool for the diagnosis of deep caries and pulpitis using
convolutional neural networks. AME Publishing Company, 9(9), 763-763.
https://doi.org/10.21037/atm-21-119
Zhu, Y., Ng, C., Lê, O., Ho, Y., & Fried, D. (2023, August 31). Diagnostic Performance of
Multispectral SWIR Transillumination and Reflectance Imaging for Caries Detection.
Multidisciplinary Digital Publishing Institute, 13(17), 2824-2824.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Hashim Al-Hashimi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.